Foundations of Query Languages Dr. Fang Wei Lehrstuhl für Datenbanken und Informationssysteme Universität Freiburg SS 2011 #### Relational Model - We assume that a countably infinite set attr of attributes is fixed. - The *domain* is a countably infinite set **dom** (disjoint from **attr**). - A constant is an element of dom. - A relation schema is simply a relation name R, with arity(R) = n (written as R[n]). - A database schema is a nonempty finite set \mathcal{R} of relation names. - A tuple over a (possibly empty) finite set U of attributes (or over a relation schema R[U]) is a total mapping u from U to **dom**. - or, a *tuple* is an ordered *n*-tuple $(n \ge 0)$ of constants an element of the Cartesian product **dom**ⁿ. - lacksquare A database instance is a finite set $\mathcal I$ that is the union of tuples. # Conjunctive Queries #### Definition A conjunctive Query Q over a database schema $\mathcal R$ is given as $$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}),$$ such that for $1 \le i \le n$ - \blacksquare R_i a relation name in $\mathcal R$ and - \vec{U} and \vec{U}_i vectors of variables and constants; - **a** any variable appearing in \vec{U} appears also in some $\vec{U_i}$. - Left to ← is the head of the query, and to the right there is the body. The atoms in the body are also called subgoals. #### Example Sales(Part, Supplier, Customer), Part(PName, Type), Cust(CName, CAddr), Supp(SName, SAddr). Q: ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$ #### Answer - The set of answers Q w.r.t. an instance \mathcal{I} is denoted $Q(\mathcal{I})$. - If there is a substitution (mapping) σ from the variables in $\vec{U}_1, \ldots, \vec{U}_n$ to the constants in **dom**, such that $\sigma(R_1(\vec{U_1})), \ldots, \sigma(R_n(\vec{U_n})) \in \mathcal{I}$, then by applying the same substitution σ to \vec{U} , we say that $\sigma(ans(\vec{U}))$ is an answer in $Q(\mathcal{I})$. - Note that a substitution is a function such that a variable is mapped into only one constant, and a constant is mapped into itself. Dr. Fang Wei 4. Mai 2011 $$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$ #### Complexity of Query Answering Let Q be a conjunctive query and \mathcal{I} a database instance. what is the complexity of computing all the answers of $Q(\mathcal{I})$? N^m where N is the size of \mathcal{I} (number of constants in \mathcal{I}), and m the size of the query (number of distinct variables in Q). #### Boolean Conjunctive Query true $$\leftarrow R_1(\vec{U_1}), \ldots, R_n(\vec{U_n}).$$ - Boolean conjunctive query answering is a decision problem. - The complexity of the boolean conjunctive query answering is NP-complete. #### **Decision Problems** - Problems where the answer is "yes" or "no" - Formally, - \blacksquare A language L over some alphabet Σ . - An *instance* is given as a word $x \in \Sigma^*$. - **Question:** whether $x \in L$ holds - The resources (i.e., either time or space) required in the worst case to find the correct answer for any instance x of a problem L is referred to as the complexity of the problem L ## Complexity classes #### $\mathsf{L} \subset \mathsf{NL} \subset \mathsf{P} \subset \mathsf{NP} \subset \mathsf{PSPACE} \subset \mathsf{EXPTIME} \subset \mathsf{NEXPTIME}$ These are the classes of problems which can be solved in - logarithmic space (L), - non-deterministic logarithmic space (NL), - polynomial time (P), - non-deterministic polynomial time (NP), - polynomial space (PSPACE), - exponential time (EXPTIME), and - non-deterministic exponential time (NEXPTIME). ## Complexity classes – co Problems - lacksquare Any complexity class $\mathcal C$ has its *complementary class* denoted by co- $\mathcal C$ - For every language $L \subseteq \Sigma^*$, let \overline{L} denote its *complement*, i.e. the set $\Sigma^* \setminus L$. Then co-C is $\{\overline{L} \mid L \in C\}$. - Every deterministic complexity class is closed under complement, because one can simply add a last step to the algorithm which reverses the answer. (co-P?) ## Complexity classes - Reductions #### ■ Logspace Reduction - Let L_1 and L_2 be decision problems (languages over some alphabet Σ). - $lackbox{$\mathbb{R}$} : \Sigma^* o \Sigma^*$ be a function which can be computed in logarithmic space - The following property holds: for every $x \in \Sigma^*$, $x \in L_1$ iff $R(x) \in L_2$. - Then R is called a *logarithmic-space reduction* from L_1 to L_2 and we say that L_1 is *reducible* to L_2 . #### Hardness, Completeness Let $\mathcal C$ be a set of languages. A language L is called $\mathcal C$ -hard if any language L' in $\mathcal C$ is reducible to L. If L is $\mathcal C$ -hard and $L \in \mathcal C$ then L is called *complete* for $\mathcal C$ or simply $\mathcal C$ -complete. A deterministic Turing machine (DTM) is defined as a quadruple $$(S, \Sigma, \delta, s_0)$$ - S is a finite set of states. - $lue{\Sigma}$ is a finite alphabet of *symbols*, which contains a special symbol \Box called the *blank*. - \bullet δ is a transition function. - and $s_0 \in S$ is the *initial state*. The transition function δ is a map $$\delta: S \times \Sigma \rightarrow (S \cup \{\text{yes}, \text{no}\}) \times \Sigma \times \{-1, 0, +1\},$$ where yes, and no denote two additional states not occurring in S, and -1, 0, +1 denote motion directions. 4 U P 4 UP P 4 E P 4 E P 9 C P DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM Transition Function example: $$\delta(s,a)=(s',b,-1)$$ DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM Transition Function example: $$\delta(s,a)=(s',b,-1)$$ DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM Transition Function example: $$\delta(s,a)=(s',b,-1)$$ DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM T halts, when any of the states yes or no is reached DTM quadruple: $$(\Sigma, S, \delta, s_0)$$ Transition function: $$\delta(s,\sigma)=(s',\sigma',d).$$ The tape of the TM T halts, when any of the states yes or no is reached #### **NDTM** A non-deterministic Turing machine (NDTM) is defined as a quadruple $$(S, \Sigma, \Delta, s_0)$$ - S, Σ, s_0 are the same as DTM - lacktriangle Δ is no longer a function, but a relation: $$\Delta \ \subseteq \ (S \times \Sigma) \times (S \cup \{\texttt{yes}, \texttt{no}\}) \times \Sigma \times \{\texttt{-1, 0, +1}\}.$$ - A tuple with s and σ . If the number of such tuples is greater than one, the NDTM non-deterministically chooses any of them and operates accordingly. - Unlike the case of a DTM, the definition of acceptance and rejection by a NDTM is asymmetric. # Nondeterministic Computation (Accept) # Nondeterministic Computation (Accept) # Nondeterministic Computation (Accept) ## Nondeterministic Computation (Rejection) Dr. Fang Wei 4. Mai 2011 Seite 25 # Nondeterministic Computation (Rejection) Dr. Fang Wei 4. Mai 2011 Seite 26 ### Exponentail vs. Polynomial #### NP problems #### NP problems #### NP problems Paradigm: Guess and Check There are many problems in NP for which the best known algorithm runs in exponential time only. However, for no problem in NP there is a proof of exponential complexity. #### **NP Complete Problems** NP-Complete: the hardest problems in NP All problems in NPC can be polynomially transformed into one another. One polynomially solvable \rightarrow all polynomially solvable, i.e. NP=P. #### Karp and Cook's Theorem [1972] SAT problem is NP-Complete. ightarrow Thousands of other problems. #### P = NP? The most important open problem of Theoretical Computer Science. Clay Mathematical Institute one million dollars for solving it. #### **NP Complete Problems** ■ 3-SAT $$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$ ■ 3-Colorability ■ TSP (Travelling Salesman Problem) #### NP-completeness proof - The problem is in NP: - Guess a substitution (mapping) from all the variables in Q to a set of constants in I, - Check whether the substitution makes the subgoals in the body true. - The problem is NP hard: reduction from 3-SAT. $$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$ #### NP-completeness proof The problem is NP hard: reduction from 3-SAT. $$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$ \mathcal{I} : r(1,1,1), r(1,1,0), r(1,0,1), r(1,0,0), r(0,1,1), r(0,1,0), r(0,0,1), c(1,0), c(0,1). Q: $r(v_1,v_2,nv_3)$, $r(v_1,nv_2,nv_4)$, $r(nv_1,v_3,v_4)$, $c(v_1,nv_1)$, $c(v_2,nv_2)$, $c(v_3,nv_3)$, $c(v_4,nv_4)$. Equivalence proof \rightarrow Homework. ### **Problemes** Let Q, Q_1, Q_2 be conjunctive queries. Containment: $Q_1 \sqsubseteq Q_2$, i.e., $Q_1(\mathcal{I}) \subseteq Q_2(\mathcal{I})$ for any instance \mathcal{I} ? Equivalence: $Q_1 \equiv Q_2$, i.e., $Q_1 \sqsubseteq Q_2$ and $Q_2 \sqsubseteq Q_1$? Minimization: Given Q_1 , construct an equivalent query Q_2 , which has as most as much subgoals in its body as Q_1 and is minimal in the sense, that any query Q_3 being equivalent to Q_2 has at least as much subgoals in the body as Q_2 . Q_2 is called *minimal*. Sales(Part, Supplier, Customer), Part(PName, Type), Cust(CName, CAddr), Supp(SName, SAddr). #### Equivalent queries: $$Q:$$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $$Q': \qquad \textit{ans}(T) \leftarrow \textit{Sales}(P, S, C), \textit{Part}(P, T), \textit{Cust}(C, A), \textit{Supp}(S, A), \\ \textit{Sales}(P', S', C'), \textit{Part}(P', T)$$ #### Lemma Let $$Q_1$$: $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ Q_2 : $ans(\vec{U}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ be conjunctive queries, where $$\{R_1(\vec{U_1}), \dots, R_n(\vec{U_n})\} \supseteq \{S_1(\vec{V_1}), \dots, S_m(\vec{V_m})\}$$ Then $Q_1 \sqsubseteq Q_2$. ### Substitution - A substitution θ over a set of variables $\mathcal V$ is a mapping from $\mathcal V$ to $\mathcal V \cup \operatorname{dom}$, where dom a corresponding domain. - We extend θ to constants $a \in \mathbf{dom}$ and relation names $R \in \mathcal{R}$, where $\theta(a) = a$, resp. $\theta(R) = R$. #### Consider $$Q:$$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $$Q': ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$$ and θ : # Containment Mapping Given conjunctive queries $$Q_1:$$ $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ Substitution θ is called *containment mapping* from Q_2 to Q_1 , if Q_2 can be transformed by means of θ to become Q_1 : - \bullet $\theta(ans(\vec{V})) = ans(\vec{U}),$ - for $i=1,\ldots,m$ there exists a $j\in\{1,\ldots,n\}$, such that $\theta(S_i(\vec{V_i}))=R_j(\vec{U_j})$. $$Q: ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$$ $$Q'$$: $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$ θ : θ is a containment mapping. ### Theorem Let $$Q_1:$$ $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ be conjunctive queries. $Q_1 \sqsubseteq Q_2$ iff there exists a containment mapping θ from Q_2 to Q_1 . ### Proof " \Leftarrow ": There exists containment mapping θ . Let \mathcal{I} be an instance of Q_1 and let $\mu \in Q_1(\mathcal{I})$. There exists a substitution τ , such that $\tau(\vec{U}_j) \in \mathcal{I}(R_j)$, $j \in \{1, ..., n\}$ and $\mu = \tau(\vec{U})$. Consider a substitution $\tau' = \tau \circ \theta$ and further $\tau'(S_i(\vec{V_i}))$. There holds $\tau'(\vec{V}_i) \in \mathcal{I}(S_i)$, $i \in \{1, ..., m\}$ and therefore also $\mu = \tau'(\vec{V})$. D.h., $\mu \in Q_2(\mathcal{I})$. #### Canonical Instance Let Q be a conjunctive $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ over a database schema \mathcal{R} . The canonical instance \mathcal{I}_Q to Q is constructed as follows. \mathcal{I}_Q is an instance of $\mathcal{R} = \{R_1, \dots, R_n\}$. Let τ be a substitution, which assigns to any X in Q an unique constant a_X . ■ For any literal $R(t_1, \ldots, t_n)$ in the body, insert a tupel of the form $(\tau(t_1), \ldots, \tau(t_n))$ into $\mathcal{I}_Q(R)$; we also write $\tau(R(t_1, \ldots, t_n)) \in \mathcal{I}_Q(R)$. No other tuples are inserted into $\mathcal{I}_Q(R)$. τ is called *canonical substitution*. $$Q:$$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $Q':$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),$ $Sales(P', S', C'), Part(P', T)$ $\mathcal{I}_{\mathcal{Q}}$: $\mathcal{I}_{Q'}$: 4□ > 4□ > 4 = > 4 = > = 900 #### Proof " \Rightarrow ": $Q_1 \sqsubseteq Q_2$. Consider \mathcal{I}_{Q_1} and the corresponding canonical substitution τ . Then $\tau(ans(\vec{U})) \in Q_1(\mathcal{I}_{Q_1})$. Because of $Q_1 \sqsubseteq Q_2$ further $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$. Thus, there exists a substitution ρ , such that $\rho(S_i(\vec{V_i})) = \tau(R_j(\vec{U_j})), 1 \leq i \leq m$, $$j \in \{1, \dots, n\} \text{ und } \rho(\mathsf{ans}(\vec{V})) = \tau(\mathsf{ans}(\vec{U})).$$ $\tau^{-1} \circ \rho$ is a containment mapping. # Corollary Let $$Q_1:$$ $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ be conjunctive queries, \mathcal{I}_{Q_1} the canonical instance to Q_1 with canonical substitution τ . $$Q_1 \sqsubseteq Q_2$$, iff $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$. Proof: We show, whenever $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$, then $Q_1 \sqsubseteq Q_2$. For any S_j in Q_2 , \mathcal{I}_{Q_1} is not empty. Therefore, for S_j there exists a R_i , such that $S_j = R_i$. Further, there exists a substitution ρ , such that for $S_j(\vec{V}_j)$ we have $\rho(V_j) \in \mathcal{I}_{Q_1}(R_i)$. $\rho \circ \tau^{-1}$ is a containment mapping from Q_2 to Q_1 . $$ans(a_T) \in Q(\mathcal{I}_{Q'})$$ and $$\mathit{ans}(a_T) \in \mathit{Q}'(\mathcal{I}_\mathit{Q}).$$ Seite 50