Foundations of Query Languages

Dr. Fang Wei

Lehrstuhl für Datenbanken und Informationssysteme Universität Freiburg

SS 2011

Relational Model

- We assume that a countably infinite set attr of attributes is fixed.
- The *domain* is a countably infinite set **dom** (disjoint from **attr**).
- A constant is an element of dom.
- A relation schema is simply a relation name R, with arity(R) = n (written as R[n]).
- A database schema is a nonempty finite set \mathcal{R} of relation names.
- A tuple over a (possibly empty) finite set U of attributes (or over a relation schema R[U]) is a total mapping u from U to **dom**.
- or, a *tuple* is an ordered *n*-tuple $(n \ge 0)$ of constants an element of the Cartesian product **dom**ⁿ.
- lacksquare A database instance is a finite set $\mathcal I$ that is the union of tuples.

Conjunctive Queries

Definition

A conjunctive Query Q over a database schema $\mathcal R$ is given as

$$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}),$$

such that for $1 \le i \le n$

- \blacksquare R_i a relation name in $\mathcal R$ and
- \vec{U} and \vec{U}_i vectors of variables and constants;
- **a** any variable appearing in \vec{U} appears also in some $\vec{U_i}$.
- Left to ← is the head of the query, and to the right there is the body. The atoms in the body are also called subgoals.

Example

Sales(Part, Supplier, Customer), Part(PName, Type), Cust(CName, CAddr), Supp(SName, SAddr).

Q: ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$

$$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$

Answer

- The set of answers Q w.r.t. an instance \mathcal{I} is denoted $Q(\mathcal{I})$.
- If there is a substitution (mapping) σ from the variables in $\vec{U}_1, \ldots, \vec{U}_n$ to the constants in **dom**, such that $\sigma(R_1(\vec{U_1})), \ldots, \sigma(R_n(\vec{U_n})) \in \mathcal{I}$, then by applying the same substitution σ to \vec{U} , we say that $\sigma(ans(\vec{U}))$ is an answer in $Q(\mathcal{I})$.
- Note that a substitution is a function such that a variable is mapped into only one constant, and a constant is mapped into itself.

Dr. Fang Wei 4. Mai 2011

$$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$

Complexity of Query Answering

Let Q be a conjunctive query and \mathcal{I} a database instance. what is the complexity of computing all the answers of $Q(\mathcal{I})$?

 N^m

where N is the size of \mathcal{I} (number of constants in \mathcal{I}), and m the size of the query (number of distinct variables in Q).

Boolean Conjunctive Query

true
$$\leftarrow R_1(\vec{U_1}), \ldots, R_n(\vec{U_n}).$$

- Boolean conjunctive query answering is a decision problem.
- The complexity of the boolean conjunctive query answering is NP-complete.

Decision Problems

- Problems where the answer is "yes" or "no"
- Formally,
 - \blacksquare A language L over some alphabet Σ .
 - An *instance* is given as a word $x \in \Sigma^*$.
 - **Question:** whether $x \in L$ holds
- The resources (i.e., either time or space) required in the worst case to find the correct answer for any instance x of a problem L is referred to as the complexity of the problem L

Complexity classes

$\mathsf{L} \subset \mathsf{NL} \subset \mathsf{P} \subset \mathsf{NP} \subset \mathsf{PSPACE} \subset \mathsf{EXPTIME} \subset \mathsf{NEXPTIME}$

These are the classes of problems which can be solved in

- logarithmic space (L),
- non-deterministic logarithmic space (NL),
- polynomial time (P),
- non-deterministic polynomial time (NP),
- polynomial space (PSPACE),
- exponential time (EXPTIME), and
- non-deterministic exponential time (NEXPTIME).

Complexity classes – co Problems

- lacksquare Any complexity class $\mathcal C$ has its *complementary class* denoted by co- $\mathcal C$
- For every language $L \subseteq \Sigma^*$, let \overline{L} denote its *complement*, i.e. the set $\Sigma^* \setminus L$. Then co-C is $\{\overline{L} \mid L \in C\}$.
- Every deterministic complexity class is closed under complement, because one can simply add a last step to the algorithm which reverses the answer. (co-P?)

Complexity classes - Reductions

■ Logspace Reduction

- Let L_1 and L_2 be decision problems (languages over some alphabet Σ).
- $lackbox{$\mathbb{R}$} : \Sigma^* o \Sigma^*$ be a function which can be computed in logarithmic space
- The following property holds: for every $x \in \Sigma^*$, $x \in L_1$ iff $R(x) \in L_2$.
- Then R is called a *logarithmic-space reduction* from L_1 to L_2 and we say that L_1 is *reducible* to L_2 .

Hardness, Completeness

Let $\mathcal C$ be a set of languages. A language L is called $\mathcal C$ -hard if any language L' in $\mathcal C$ is reducible to L. If L is $\mathcal C$ -hard and $L \in \mathcal C$ then L is called *complete* for $\mathcal C$ or simply $\mathcal C$ -complete.

A deterministic Turing machine (DTM) is defined as a quadruple

$$(S, \Sigma, \delta, s_0)$$

- S is a finite set of states.
- $lue{\Sigma}$ is a finite alphabet of *symbols*, which contains a special symbol \Box called the *blank*.
- \bullet δ is a transition function.
- and $s_0 \in S$ is the *initial state*.

The transition function δ is a map

$$\delta: S \times \Sigma \rightarrow (S \cup \{\text{yes}, \text{no}\}) \times \Sigma \times \{-1, 0, +1\},$$

where yes, and no denote two additional states not occurring in S, and -1, 0, +1 denote motion directions.

4 U P 4 UP P 4 E P 4 E P 9 C P

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

Transition Function example:

$$\delta(s,a)=(s',b,-1)$$

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

Transition Function example:

$$\delta(s,a)=(s',b,-1)$$

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

Transition Function example:

$$\delta(s,a)=(s',b,-1)$$

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

T halts, when any of the states yes or no is reached

DTM quadruple:

$$(\Sigma, S, \delta, s_0)$$

Transition function:

$$\delta(s,\sigma)=(s',\sigma',d).$$

The tape of the TM

T halts, when any of the states yes or no is reached

NDTM

A non-deterministic Turing machine (NDTM) is defined as a quadruple

$$(S, \Sigma, \Delta, s_0)$$

- S, Σ, s_0 are the same as DTM
- lacktriangle Δ is no longer a function, but a relation:

$$\Delta \ \subseteq \ (S \times \Sigma) \times (S \cup \{\texttt{yes}, \texttt{no}\}) \times \Sigma \times \{\texttt{-1, 0, +1}\}.$$

- A tuple with s and σ . If the number of such tuples is greater than one, the NDTM non-deterministically chooses any of them and operates accordingly.
- Unlike the case of a DTM, the definition of acceptance and rejection by a NDTM is asymmetric.

Nondeterministic Computation (Accept)

Nondeterministic Computation (Accept)

Nondeterministic Computation (Accept)

Nondeterministic Computation (Rejection)

 Dr. Fang Wei
 4. Mai 2011
 Seite 25

Nondeterministic Computation (Rejection)

 Dr. Fang Wei
 4. Mai 2011
 Seite 26

Exponentail vs. Polynomial

NP problems

NP problems

NP problems

Paradigm: Guess and Check

There are many problems in NP for which the best known algorithm runs in exponential time only.

However, for no problem in NP there is a proof of exponential complexity.

NP Complete Problems

NP-Complete: the hardest problems in NP

All problems in NPC can be polynomially transformed into one another.

One polynomially solvable \rightarrow all polynomially solvable, i.e. NP=P.

Karp and Cook's Theorem [1972]

SAT problem is NP-Complete.

ightarrow Thousands of other problems.

P = NP?

The most important open problem of Theoretical Computer Science. Clay Mathematical Institute one million dollars for solving it.

NP Complete Problems

■ 3-SAT

$$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$

■ 3-Colorability

■ TSP (Travelling Salesman Problem)

NP-completeness proof

- The problem is in NP:
 - Guess a substitution (mapping) from all the variables in Q to a set of constants in I,
 - Check whether the substitution makes the subgoals in the body true.
- The problem is NP hard: reduction from 3-SAT.

$$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$

NP-completeness proof

The problem is NP hard: reduction from 3-SAT.

$$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$

 \mathcal{I} : r(1,1,1), r(1,1,0), r(1,0,1), r(1,0,0), r(0,1,1), r(0,1,0), r(0,0,1), c(1,0), c(0,1). Q: $r(v_1,v_2,nv_3)$, $r(v_1,nv_2,nv_4)$, $r(nv_1,v_3,v_4)$, $c(v_1,nv_1)$, $c(v_2,nv_2)$, $c(v_3,nv_3)$, $c(v_4,nv_4)$.

Equivalence proof \rightarrow Homework.

Problemes

Let Q, Q_1, Q_2 be conjunctive queries.

Containment: $Q_1 \sqsubseteq Q_2$, i.e., $Q_1(\mathcal{I}) \subseteq Q_2(\mathcal{I})$ for any instance \mathcal{I} ?

Equivalence: $Q_1 \equiv Q_2$, i.e., $Q_1 \sqsubseteq Q_2$ and $Q_2 \sqsubseteq Q_1$?

Minimization: Given Q_1 , construct an equivalent query Q_2 , which has as most as much subgoals in its body as Q_1 and is minimal in the sense, that any query Q_3 being equivalent to Q_2 has at least as much subgoals in the body as Q_2 .

 Q_2 is called *minimal*.

Sales(Part, Supplier, Customer),
Part(PName, Type),
Cust(CName, CAddr),
Supp(SName, SAddr).

Equivalent queries:

$$Q:$$
 ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$

$$Q': \qquad \textit{ans}(T) \leftarrow \textit{Sales}(P, S, C), \textit{Part}(P, T), \textit{Cust}(C, A), \textit{Supp}(S, A), \\ \textit{Sales}(P', S', C'), \textit{Part}(P', T)$$

Lemma

Let

$$Q_1$$
: $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 Q_2 : $ans(\vec{U}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

be conjunctive queries, where

$$\{R_1(\vec{U_1}), \dots, R_n(\vec{U_n})\} \supseteq \{S_1(\vec{V_1}), \dots, S_m(\vec{V_m})\}$$

Then $Q_1 \sqsubseteq Q_2$.

Substitution

- A substitution θ over a set of variables $\mathcal V$ is a mapping from $\mathcal V$ to $\mathcal V \cup \operatorname{dom}$, where dom a corresponding domain.
- We extend θ to constants $a \in \mathbf{dom}$ and relation names $R \in \mathcal{R}$, where $\theta(a) = a$, resp. $\theta(R) = R$.

Consider

$$Q:$$
 ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$

$$Q': ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$$

and θ :

Containment Mapping

Given conjunctive queries

$$Q_1:$$
 $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

Substitution θ is called *containment mapping* from Q_2 to Q_1 , if Q_2 can be transformed by means of θ to become Q_1 :

- \bullet $\theta(ans(\vec{V})) = ans(\vec{U}),$
 - for $i=1,\ldots,m$ there exists a $j\in\{1,\ldots,n\}$, such that $\theta(S_i(\vec{V_i}))=R_j(\vec{U_j})$.

$$Q: ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$$

$$Q'$$
: $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$

 θ :

 θ is a containment mapping.

Theorem

Let

$$Q_1:$$
 $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

be conjunctive queries.

 $Q_1 \sqsubseteq Q_2$ iff there exists a containment mapping θ from Q_2 to Q_1 .

Proof " \Leftarrow ":

There exists containment mapping θ .

Let \mathcal{I} be an instance of Q_1 and let $\mu \in Q_1(\mathcal{I})$.

There exists a substitution τ , such that $\tau(\vec{U}_j) \in \mathcal{I}(R_j)$, $j \in \{1, ..., n\}$ and $\mu = \tau(\vec{U})$.

Consider a substitution $\tau' = \tau \circ \theta$ and further $\tau'(S_i(\vec{V_i}))$.

There holds $\tau'(\vec{V}_i) \in \mathcal{I}(S_i)$, $i \in \{1, ..., m\}$ and therefore also $\mu = \tau'(\vec{V})$. D.h., $\mu \in Q_2(\mathcal{I})$.

Canonical Instance

Let Q be a conjunctive $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ over a database schema \mathcal{R} . The canonical instance \mathcal{I}_Q to Q is constructed as follows.

 \mathcal{I}_Q is an instance of $\mathcal{R} = \{R_1, \dots, R_n\}$.

Let τ be a substitution, which assigns to any X in Q an unique constant a_X .

■ For any literal $R(t_1, \ldots, t_n)$ in the body, insert a tupel of the form $(\tau(t_1), \ldots, \tau(t_n))$ into $\mathcal{I}_Q(R)$; we also write $\tau(R(t_1, \ldots, t_n)) \in \mathcal{I}_Q(R)$. No other tuples are inserted into $\mathcal{I}_Q(R)$.

 τ is called *canonical substitution*.

$$Q:$$
 ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$
 $Q':$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),$
 $Sales(P', S', C'), Part(P', T)$

 $\mathcal{I}_{\mathcal{Q}}$:

 $\mathcal{I}_{Q'}$:

4□ > 4□ > 4 = > 4 = > = 900

Proof " \Rightarrow ":

 $Q_1 \sqsubseteq Q_2$.

Consider \mathcal{I}_{Q_1} and the corresponding canonical substitution τ .

Then $\tau(ans(\vec{U})) \in Q_1(\mathcal{I}_{Q_1})$.

Because of $Q_1 \sqsubseteq Q_2$ further $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$.

Thus, there exists a substitution ρ , such that $\rho(S_i(\vec{V_i})) = \tau(R_j(\vec{U_j})), 1 \leq i \leq m$,

$$j \in \{1, \dots, n\} \text{ und } \rho(\mathsf{ans}(\vec{V})) = \tau(\mathsf{ans}(\vec{U})).$$

 $\tau^{-1} \circ \rho$ is a containment mapping.

Corollary

Let

$$Q_1:$$
 $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$
 $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$

be conjunctive queries, \mathcal{I}_{Q_1} the canonical instance to Q_1 with canonical substitution τ .

$$Q_1 \sqsubseteq Q_2$$
, iff $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$.

Proof: We show, whenever $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$, then $Q_1 \sqsubseteq Q_2$. For any S_j in Q_2 , \mathcal{I}_{Q_1} is not empty. Therefore, for S_j there exists a R_i , such that $S_j = R_i$. Further, there exists a substitution ρ , such that for $S_j(\vec{V}_j)$ we have $\rho(V_j) \in \mathcal{I}_{Q_1}(R_i)$. $\rho \circ \tau^{-1}$ is a containment mapping from Q_2 to Q_1 .

$$ans(a_T) \in Q(\mathcal{I}_{Q'})$$

and

$$\mathit{ans}(a_T) \in \mathit{Q}'(\mathcal{I}_\mathit{Q}).$$

Seite 50