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Relational Model

We assume that a countably infinite set attr of attributes is fixed.
The domain is a countably infinite set dom (disjoint from attr).

A constant is an element of dom.

A relation schema is simply a relation name R, with arity(R) = n (written
as R[n]).

A database schema is a nonempty finite set R of relation names.

A tuple over a (possibly empty) finite set U of attributes (or over a relation
schema R[U]) is a total mapping v from U to dom.

m or, a tuple is an ordered n-tuple (n > 0) of constants — an element of the
Cartesian product dom".

A database instance is a finite set Z that is the union of tuples.
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Conjunctive Queries

Definition
A conjunctive Query Q over a database schema R is given as

ans(U) < Ry(UL), ..., Ra(U,),

such that for 1 </ <n
m R; a relation name in R and
= U and (7,- vectors of variables and constants;
m any variable appearing in U appears also in some lj,

m Left to < is the head of the query, and to the right there is the body. The
atoms in the body are also called subgoals.
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Example
Sales(Part, Supplier, Customer),
Part(PName, Type),
Cust(CName, CAddr),
Supp(SName, SAddr).
Q: ans(T) + Sales(P,S, C), Part(P, T), Cust(C, A), Supp(S, A)
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ans(U) < Ry(UL), ..., Ra(Up).

Answer

m The set of answers @ w.r.t. an instance Z is denoted Q(Z).

m If there is a substitution (mapping) o from the variables in (71, ey J,, to
the constants in dom, such that U(Rl(Ul)) ,0(Ra(Un )) € Z, then by
applying the same substitution o to U, we say that a(ans(U)) is an answer
in Q(Z).

m Note that a substitution is a function such that a variable is mapped into
only one constant, and a constant is mapped into itself.
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—

ans(U) < Ry(UL), ..., Ra(Up).

Complexity of Query Answering

Let Q be a conjunctive query and Z a database instance. what is the complexity
of computing all the answers of Q(Z)?

Nm

where N is the size of Z (number of constants in Z), and m the size of the
query (number of distinct variables in Q).
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Boolean Conjunctive Query

—

true < Ry(Uh), ..., Ra(Up).

m Boolean conjunctive query answering is a decision problem.

m The complexity of the boolean conjunctive query answering is NP-complete.
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Decision Problems

m Problems where the answer is “yes” or “no”

m Formally,
m A language L over some alphabet ¥.
m An instance is given as a word x € L".
m Question: whether x € L holds
m The resources (i.e., either time or space) required in the worst case to find
the correct answer for any instance x of a problem L is referred to as the
complexity of the problem L
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Complexity classes

L C NL C P C NP C PSPACE C EXPTIME C NEXPTIME

These are the classes of problems which can be solved in
m logarithmic space (L),

non-deterministic logarithmic space (NL),

polynomial time (P),

non-deterministic polynomial time (NP),

polynomial space (PSPACE),

exponential time (EXPTIME), and

non-deterministic exponential time (NEXPTIME).
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Complexity classes — co Problems

m Any complexity class C has its complementary class denoted by co-C

m For every language L C X7, let L denote its complement, i.e. the set
Y*\ L. Then co-Cis {L| L€ C}.
m Every deterministic complexity class is closed under complement, because

one can simply add a last step to the algorithm which reverses the answer.
(co-P?)
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Complexity classes — Reductions

m Logspace Reduction

m Let L; and L, be decision problems (languages over some alphabet X).
R :X* — X" be a function which can be computed in logarithmic space
The following property holds: for every x € £*, x € L iff R(x) € L».
Then R is called a logarithmic-space reduction from L; to Ly and we say
that Ly is reducible to L.

m Hardness, Completeness
Let C be a set of languages. A language L is called C-hard if any language
L’ in C is reducible to L. If L is C-hard and L € C then L is called complete
for C or simply C-complete.
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Turing machines

A deterministic Turing machine (DTM) is defined as a quadruple
(57 Z, 57 50)

m S is a finite set of states,

m Y is a finite alphabet of symbols, which contains a special symbol , called
the blank.

m 0 is a transition function,

m and sy € S is the initial state.

The transition function ¢ is a map

0: SXxX — (SU{yes,no})x X x{-1, 0, +1},

where yes, and no denote two additional states not occurring in S, and -1, 0,
+1 denote motion directions.
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Turing machines

DTM quadruple:
(Z, Sv 67 50)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

’D‘a‘b‘...‘bs‘a‘a‘u‘u‘u‘u‘,_.
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Turing machines

DTM quadruple:
(Z, Sv 67 50)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

’DS‘a‘b‘...‘b‘a‘a‘u‘u‘u‘u‘,_.
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Turing machines

DTM quadruple:
(Z, Sv 67 50)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

FLLEBEEEEERE
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Turing machines

DTM quadruple:
(zy 57 5a SO)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

LlelefTp[ele oo ool

Transition Function example:

5(s,a) = (s',b,—1)
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Turing machines

DTM quadruple:
(zy 57 5a SO)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

’D‘a‘b‘..-‘bib‘a‘u‘u‘u‘u‘...

Transition Function example:

5(s,a) = (s',b,—1)
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Turing machines

DTM quadruple:
(Zv 57 53 50)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

Tal6[ 16lb]a]o]c]o]o]

S/

Transition Function example:

8(s,a) = (s', b, —1)
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Turing machines

DTM quadruple:
(Zv 57 53 50)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

(>]albl-|b][b]ala]a]b]b] -

yes

T halts, when any of the states yes or no is reached
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Turing machines

DTM quadruple:
(Zv 57 53 50)

Transition function:
§(s,0) = (s',0',d).

The tape of the TM

(>]albl-|b][b]ala]a]b]b] -

no

Reject!

T halts, when any of the states yes or no is reached
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A non-deterministic Turing machine (NDTM) is defined as a quadruple

(57 Z? A7 SO)

m 5,¥ sy are the same as DTM

m A is no longer a function, but a relation:

A C (SxX)x(SU{yes,no}) x X x{-1, 0, +1}.

m A tuple with s and o. If the number of such tuples is greater than one, the
NDTM non-deterministically chooses any of them and operates accordingly.

m Unlike the case of a DTM, the definition of acceptance and rejection by a
NDTM is asymmetric.
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Nondeterministic Computation (Accept)

— T
VANVANEVAN
FANVANNA N AN A WA
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Nondeterministic Computation (Accept)

— T
ANVANERVAN
VAN AN AN A WY
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Nondeterministic Computation (Accept)

i
VANV ANVAN
FANVANN WAL WY
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Nondeterministic Computation (Rejection)

| .
NN N
NIAVIVIVIAL A
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Nondeterministic Computation (Rejection)

| .
VA NNYVANERVAN
A AN AN AN

Reject'
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Exponentail vs. Polynomial

A Exponential

2[1

runtime

Polynomial
= -

instance size
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NP problems

PROVABLY EXPONENTIAL
Theory of the Real Numbers

Domino Problems

PROBL.

PROVABLY POLYNOMIAL

Find shortest path in graph
Linear Programming
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NP problems

Paradigm: Guess and Check
There are many problems in NP for which the best known algorithm runs in

exponential time only.
However, for no problem in NP there is a proof of exponential complexity.

EXPTIME
NP
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NP Complete Problems

NP-Complete: the hardest problems in NP
All problems in NPC can be polynomially transformed into one another.
One polynomially solvable — all polynomially solvable, i.e. NP=P.

Structure inside NP
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Karp and Cook's Theorem [1972]
SAT problem is NP-Complete.

& o
FH
Gw &

— Thousands of other problems.
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P = NP?

The most important open problem of Theoretical Computer Science.
Clay Mathematical Institute one million dollars for solving it.
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NP Complete Problems

m 3-SAT
(V1\/V2\/\73)/\(V1\/\72\/\74)/\(\71\/V3\/V4)

m 3-Colorability

m TSP (Travelling Salesman Problem)

~

ae
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NP-completeness proof

m The problem is in NP:
m Guess a substitution (mapping) from all the variables in Q to a set of

constants in Z,
m Check whether the substitution makes the subgoals in the body true.

m The problem is NP hard: reduction from 3-SAT.

(Vl\/Vz\/\73)/\(V1\/\72\/\74)/\(\71\/V3\/V4)
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NP-completeness proof
The problem is NP hard: reduction from 3-SAT.
(Vl\/V2V\73)/\(V1\/\72\/\74)/\(\71\/V3\/V4)

7: r(1,1,1), r(1,1,0), (1,0,1), (1,0,0), r(0,1,1), r(0,1,0), r(0,0,1),
c(1,0), ¢(0,1).

Q: r(vi, vo, nv3), r(vi, nva, nvy), r(nvi, v, va), c(vi, nv1), c(va, nva), c(vs, nvs),
c(va, nvy).

Equivalence proof — Homework.
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Problemes

Let Q, @1, @ be conjunctive queries.

Containment: @ C @, i.e., Q1(Z) C @x(Z) for any instance Z7

Equivalence: Ql = Qz, i.e., Ql E Q2 and Qz E Q17

Minimization: Given @1, construct an equivalent query Q,, which has as most
as much subgoals in its body as @; and is minimal in the sense,
that any query Q3 being equivalent to @, has at least as much
subgoals in the body as Q».

Q> is called minimal.
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Example

Sales(Part, Supplier, Customer),
Part(PName, Type),
Cust(CName, CAddr),
Supp(SName, SAddr).

Equivalent queries:
Q: ans(T) « Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)

Q : ans(T) « Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),
Sales(P’,S’, C"), Part(P’, T)
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Lemma

Let
Q1 : ans(
Q> : ans(U) + Si(

be conjunctive queries, where
{Ri(U1), ..., Ra(Up)} 2 {S51(VA), - - -, Sm(Vim)}

Then Q1 C Q.
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Substitution

m A substitution 6 over a set of variables V is a mapping from V to V U dom,
where dom a corresponding domain.

m We extend 0 to constants a € dom and relation names R € R, where
6(a) = a, resp. 6(R) = R.
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Example
Consider
Q: ans(T) < Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)
Q : ans(T) < Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),
Sales(P',S’, C"), Part(P’, T)
and 6:

X |P P sS CcC TA
60X)|[P P S S C C T A
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Containment Mapping
Given conjunctive queries

Qu: ans(Q) « Rl((zl),...,R,,( 1”
Q> : ans(V) < S1(V1), ..., Sm(Vm)

Substitution 6 is called containment mapping from @ to @1, if Q> can be
transformed by means of 6 to become Qs:

— —

m f(ans(V)) = ans(U),
m fori=1,...,mthere exists a j € {1,...,n}, such that 8(S;(V;)) = R;(U)).
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Example
Q: ans(T) « Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)
Q' : ans(T) « Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),
Sales(P’,S’, C"), Part(P’, T)
0:
X‘PP’SS’CC’TA
6X)|] P P S S C C T A

0 is a containment mapping.
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Theorem

Let . . .
Q1 : ans(lf)(— Rl(q}),...,R,,( _’.’)
Qg : ans(V)<—51( 1),...75,-,,(\/,1,)

be conjunctive queries.
@1 C Q; iff there exists a containment mapping 6 from @, to Q.

Dr. Fang Wei 4. Mai 2011 Seite 44



Foundations of Query Languages SS 2011 2. Conjunctive Queries

Proof " «<":

There exists containment mapping 6.

Let Z be an instance of @, and let u € Q1(Z).

There exists a substitution 7, such that T(ljj) €Z(R;), je{l,...,n} and
w=T1(U). B

Consider a substitution 7 = 7 0 6 and further 7/(S;(V;)).

There holds 7/(V;) € Z(S;). i € {1,..., m} and therefore also p = 7/( V).
D.h., u € Q(Z).
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Canonical Instance

Let @ be a conjunctive ans(U) < Ry(U;), ..., R,(U,) over a database schema
‘R. The canonical instance Zq to @ is constructed as follows.

Zq is an instance of R = {Ry,..., Ry}

Let 7 be a substitution, which assigns to any X in @ an unique constant
ax.

m For any literal R(ty,...,t,) in the body, insert a tupel of the form
(7(t1),...,7(ts)) into Zg(R); we also write 7(R(t1,...,ts)) € Zo(R).
No other tuples are inserted into Zg(R).

7 is called canonical substitution.
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Example

Dr. Fang Wei

ans(T) « Sales(P, S, C), Part(P, T), Cust(C, A S
ans(T) « Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S
Sales(P',S', C"), Part(P’, T)

Sales Part Cust Supp
ap as ac ap art ac aa ds aa
Sales Part
Cust Supp
ap as ac ap art
ac aa as ada
apr as: ac apr ar

4. Mai 2011
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Proof "="":
@ C Q.

Consider Z g, and the corresponding canonical substitution 7.

—

Then 7(ans(VU)) € Q1(Zg,).

Because of @1 C Q. further 7(ans(U)) € @(Zg,).

Thus, there exists a substitution p, such that p(S;(V;)) = 7(R;(U;)), 1 < i < m,
j€{1,...,n} und p(ans(V)) = r(ans(U)).

771 o pis a containment mapping.
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Corollary

Let . . .
Qr : ans(g) — Rl(ql),...,Rn(Ug)
Q2 : ans(V) — 51(\/1),...75,,,(\/,,-,)

be conjunctive queries, Z, the canonical instance to @; with canonical
substitution 7.

@1 C @, iff 7(ans(VU)) € Q(Zg,)-

Proof: We show, whenever 7(ans(U)) € @(Zgq,), then @1 C Q.
For any S; in @, Zq, is not empty. Therefore, for S; there exists a R;, such that

Sj = R;. Further, there exists a substitution p, such that for S;(V;) we have
p(V;) € Zg,(R:). po 71 is a containment mapping from Q, to Q.
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Example
ans(art) € Q(Zq)

and
ans(ar) € Q'(Zg).
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